Are Code Examples on an Online Q&A Forum Reliable?
A Study of API Misuse on Stack Overflow

Tianyi Zhang! Ganesha Upadhyaya? Anastasia Reinhard

t3* 1

Hridesh Rajan? Miryung Kim

1University of California, Los Angeles
Jowa State University
3George Fox University
{tianyi.zhang, miryung}@cs.ucla.edu, {ganeshau, hridesh}@iastate.edu, areinhardt14@georgefox.edu

ABSTRACT

Programmers often consult an online Q&A forum such as Stack
Overflow to learn new APIs. This paper presents an empirical study
on the prevalence and severity of API misuse on Stack Overflow.
To reduce manual assessment effort, we design ExAMPLECHECK, an
API usage mining framework that extracts patterns from over 380K
Java repositories on GitHub and subsequently reports potential
API usage violations in Stack Overflow posts. We analyze 217,818
Stack Overflow posts using ExAMPLECHECK and find that 31% may
have potential API usage violations that could produce unexpected
behavior such as program crashes and resource leaks. Such API
misuse is caused by three main reasons—missing control constructs,
missing or incorrect order of API calls, and incorrect guard conditions.
Even the posts that are accepted as correct answers or upvoted by
other programmers are not necessarily more reliable than other
posts in terms of API misuse. This study result calls for a new
approach to augment Stack Overflow with alternative API usage
details that are not typically shown in curated examples.

CCS CONCEPTS

» General and reference — Empirical studies; » Software and
its engineering — Software reliability; Collaboration in software
development;

KEYWORDS

online Q&A forum, API usage pattern, code example assessment

ACM Reference Format:

Tianyi Zhang, Ganesha Upadhyaya, Anastasia Reinhardt, Hridesh Rajan,
Miryung Kim. 2018. Are Code Examples on an Online Q&A Forum Reli-
able?. In Proceedings of ICSE ’18: 40th International Conference on Software
Engineering , Gothenburg, Sweden, May 27-June 3, 2018 (ICSE ’18), 11 pages.
https://doi.org/10.1145/3180155.3180260

* Anastasia Reinhardt contributed to this work as a summer intern at UCLA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5638-1/18/05...$15.00
https://doi.org/10.1145/3180155.3180260

1 INTRODUCTION

Library APIs are becoming the fundamental building blocks in
modern software development. Programmers reuse existing func-
tionalities in well-tested libraries and frameworks by stitching API
calls together, rather than building everything from scratch. Online
Q&A forums such as Stack Overflow have a large number of cu-
rated code examples [22, 30]. Though such curated examples can
serve as a good starting point, they could potentially impact the
quality of production code, when integrated to a target application
verbatim. Recently, Fischer et al. find that 29% of security-related
snippets in Stack Overflow are insecure and these snippets could
have been reused by over 1 million Android apps on Google play,
which raises a big security concern [9]. Previous studies have also
investigated the quality of online code examples in terms of compil-
ability [23, 37], unchecked obsolete usage [39], and comprehension
issues [29]. However, none of these studies have investigated the re-
liability of online code examples in terms of API usage correctness.
There is also no tool support to help developers easily recognize
unreliable code examples in online Q&A forums.

This paper aims to assess the reliability of code examples on Stack
Overflow by contrasting them against desirable API usage patterns
mined from GitHub. Our insight is that commonly recurring API
usage from a large code corpus may represent a desirable pattern
that a programmer can use to assess or enhance code examples
on Stack Overflow. The corpus should be large enough to provide
sufficient API usage examples and to mine representative API usage
patterns. We also believe that quantifying how many snippets are
similar (or related but not similar) to a given example can improve
developers’ confidence about whether to trust the example as is.

Therefore, we design an API usage mining technology, Exam-
PLECHECK that scales to over 380K GitHub repositories without
sacrificing the fidelity and expressiveness of the underlying API
usage representation. By leveraging an ultra-large-scale software
mining infrastructure [7, 31], ExAMPLECHECK efficiently searches
over GitHub and retrieves an average of 55144 code snippets for
a given API within 10 minutes. We perform program slicing to
remove statements that are not related to the given API, which
improves accuracy in the mining process (Section 5). We combine
frequent subsequence mining and SMT-based guard condition min-
ing to retain important API usage features, including the temporal
ordering of related API calls, enclosing control structures, and guard
conditions that protect an API call. In terms of our study scope,
we target 100 Java and Android APIs that are frequently discussed
on Stack Overflow. We then inspect all patterns learned by Exam-
PLECHECK, create a data set of 180 desirable API usage patterns for
the 100 APIs, and study the extent of API misuse in Stack Overflow.

https://doi.org/10.1145/3180155.3180260
https://doi.org/10.1145/3180155.3180260

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

. Youre probably interested in a Filechannel . Channel s were designed to perform bulk IO
operations to and from Buffer s.

Ex:

FileChannel fileOut = new FileOutputStream(file).getChannel();
fileout.write(ByteBuffer.wrap("Whatever you want to write".getBytes()));

share answered Apr 8 '12 at 19:39

& 322k 7 #52 «101

(a) An example that does not close FileChannel properly’
A, Somewnhat like this:
6 short[] payload = {1,2,3,4,5,6,7,8,9,0};

ByteBuffer myByteBuffer = ByteBuffer.allocate(20);
W myByteBuffer.order (ByteOrder.LITTLE_ENDIAN);

ShortBuffer myShortBuffer = myByteBuffer.asShortBuffer();
myShortBuffer.put(payload);

FileChannel out = new FileOutputStream("sample.bin").getChannel();
out.write(myByteBuffer);
out.close();

(b) An example that misses exception handling?

Figure 1: Two code examples about how to write data to a
file using FileChannel on Stack Overflow

Out of 217,818 SO posts relevant to our API data set, 31% contain
potential API misuse that could produce symptoms such as program
crashes, resource leaks, and incomplete actions. Such API misuse is
caused by three main reasons—missing control constructs, missing or
incorrect order of API calls, and incorrect guard conditions. Database,
crypto, and networking APIs are often misused, since they often
require observing the ordering between multiple calls and complex
exception handling logic. Though programmers often put more
trust on highly voted posts in Stack Overflow, we do not observe
a strong positive nor negative correlation between the number
of votes and the reliability of Stack Overflow posts in terms of
API usage correctness. This observation suggests that votes alone
should not be used as the single indicator of the quality of Stack
Overflow posts. Our study provides empirical evidence about the
prevalence and severity of API misuse in online Q&A posts and
indicates that Stack Overflow needs another mechanism that helps
users to understand the limitation of existing curated examples. We
propose a Chrome extension that suggests desirable or alternative
APT usage for a given Stack Overflow code example, along with
supporting concrete examples mined from GitHub.

2 MOTIVATING EXAMPLES

Suppose Alice wants to write data to a file using FileChannel. Alice
searches on Stack Overflow and finds two code examples, both of
which are accepted as correct answers and upvoted by other pro-
grammers, as shown in Figure 1. Though such curated examples can
serve as a good starting point for API investigation, both examples
have API usage violations that may induce unexpected behavior in
real applications. If Alice puts too much trust on the given example
as is, she may inadvertently follow less ideal API usage.

The first post in Figure 1a does not call FileChannel.close to
close the channel. If Alice copies this example to a program that

Ihttp://stackoverflow.com/questions/ 10065852
Zhttp://stackoverflow.com/questions/10506546

Zhang, Upadhyaya, Reinhardt, Rajan, & Kim

does not heavily access new file resources, this example may be-
have properly, because OS will clean up unmanaged file resources
eventually after the program exits. However, if Alice reuses the
example in a long-running program with heavy IO, such lingering
file resources may cause file handle leaks. Since most operating
systems limit the number of opened files, unclosed file streams can
eventually run out of file handle resources [28]. Alice may also lose
cached data in the file stream, if she uses FileChannel to write a big
volume of data but forgots to flush or close the channel.

Even though the second example in Figure 1b calls FileChannel-
.close, it does not handle the potential exceptions thrown by File-
Channel.write. Calling write could throw ClosedChannelException,
if the channel is already closed. If Alice uses FileChannel in a con-
current program where multiple threads attempt to access the
same channel, AsynchronousCloseException will occur if one thread
closes the channel, while another thread is still writing data.

As a novice programmer, Alice may not easily recognize the
potential limitation of given Stack Overflow examples. In this case,
our approach ExaMpLECHECK scans over 380K GitHub repositories
and finds 2230 GitHub snippets that also call FileChannel.write.
ExAMPLECHECK then learns two common usage patterns from these
relevant GitHub snippets. The mostly frequent usage supported
by 1829 code snippets on GitHub indicates that a method call to
write() must be contained inside a try and catch block. Another
frequent usage supported by 1267 GitHub snippets indicates that
write must be followed by close. By comparing code snippets in
Figures 1a and 1b against these two API usage patterns, Alice may
consider adding a missing call to close and an exception handling
block during the example integration and adaptation.

3 API USAGE MINING AND PATTERN SET

As it is difficult to know desirable or alternative API usage a priori,
we design an API usage mining approach, called ExAMPLECHECK
that scales to massive code corpora such as GitHub. We then inspect
the results manually and construct a data set of desirable API usage
to be used for the Stack Overflow study in Section 4.

In terms of API scope, we target 100 popular Java APIs. From the
Stack Overflow dump taken in October 2016, we scan and parse
all Java code snippets and extract API method calls. We rank the
API methods based on frequency and remove trivial ones such as
System.out.println. As a result, we select 70 frequently used API
methods on Stack Overflow. They are in diverse domains, including
Android, Collection, document processing (e.g., String, XML, JSON),
graphical user interface (e.g., swing), IO, cryptography, security,
Java runtime (e.g. Thread, Process), database, networking, date,
and time. The rest 30 APIs come from an API misuse benchmark,
MUBENCH [2], after we exclude those patterns without correspond-
ing SO posts and those that cannot be generalized to other projects.

Given an API method of interest, ExAMPLECHECK takes three
phases to infer API usage. In Phase 1, given an API method of inter-
est, ExAMPLECHECK searches GitHub snippets that call the given
API method, removes irrelevant statements via program slicing,
and extracts API call sequences. In Phase 2, ExAMPLECHECK finds
common subsequences from individual sequences of API calls. In
Phase 3, to retain conditions under which each API can be invoked,

3https://archive.org/details/stackexchange, accessed on Oct 17, 2016.

http://stackoverflow.com/questions/10065852
http://stackoverflow.com/questions/10506546
https://archive.org/details/stackexchange

Are Code Examples on an Online Q&A Forum Reliable?

sequence := € | call ; sequence
| structure {; sequence ;}; sequence
call :== name(t, ...ty)@condition
structure :=if | else | loop | try | catch(t) | finally
condition :=boolean expression
name := method name
t := argument type | exception type | *

Figure 2: Grammar of Structured API Call Sequences

ExaMPLECHECK mines guard conditions associated with individual
API calls. In order to accurately estimate the frequency of unique
guard conditions, ExAMPLECHECK uses a SMT solver, Z3 [6], to
check the semantic equivalence of guard conditions, instead of con-
sidering the syntactic similarity between them only. We manually
inspect all inferred patterns to construct the data set of desirable
API usage. This data set is used to report potential API misuse in
the Stack Overflow posts in our study discussed in Section 4.

3.1 Structured Call Sequence Extraction and
Slicing on GitHub

Given an API method of interest, ExAMPLECHECK searches individ-
ual code snippets invoking the same method in the GitHub corpora.
ExaMPLECHECK scans 380,125 Java repositories on GitHub, collected
on September 2015. To filter out low-quality GitHub repositories,
we only consider repositories with at least 100 revisions and 2 con-
tributors. To scale code search to massive corpora, ExAMPLECHECK
leverages a distributed software mining infrastructure [7] to tra-
verse the abstract syntax trees (ASTs) of Java files. ExAMPLECHECK
visits every AST method and looks for a method invocation of the
API of interest. Figure 3 shows a code snippet retrieved from GitHub
for the File.createNewFile APL This snippet creates a property file,
if it does not exist by calling createNewFile (line 18).

To extract the essence of API usage, ExAMPLECHECK models each
code snippet as a structured call sequence, which abstracts away
certain syntactic details such variable names, but still retains the
temporal ordering, control structures, and guard conditions of API
calls in a compact manner. Figure 2 defines the grammar of our
API usage representation. A structured call sequence consists of
relevant control structures and API calls, separated by the delim-
iter “;”. This delimiter is is a separator in our pattern grammar in
Figure 2, not a semi-colon for ending each statement in Java. We
resolve the argument types of each API call to distinguish method
overloading. In certain cases, the argument consists of a complex
expression such as write(e.getFormat()), where the partial pro-
gram analysis may not be able to resolve the corresponding type.
In that case, we represent unresolved types with *, which can be
matched with any other types in the following mining phases. Each
API call is associated with a guard condition that protects its us-
age or true, if it is not guarded by any condition. Catch blocks are
also annotated with the corresponding exception types. We nor-
malize a catch block with multiple exception types such as catch
(IOException | SQLException){...} to multiple catch blocks with
a single exception type such as catch (IOException){...} catch
(SQLException){...3}.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

1 void initInterfaceProperties(String temp, File dDir) {
if(!temp.equals("props.txt")) {
log.error("Wrong Template.");
return;

FileInputStream in = new FileInputStream(temp);
Properties prop = new Properties();
prop.load(in);
10 // init properties
11 prop.set("interface", PROPERTIES.INTERFACE);
12 prop.set("uri", PROPERTIES.URI);
13 prop.set("version", PROPERTIES.VERSION);
14 // write to the property file
15 String fPath=dDir.getAbosulatePath()+"/interface.prop";
16 File file = new File(fPath);
17 if(!file.exists()) {
18 file.createNewFile();
19 3
20 FileOutputStream out = new FileOutputStream(file);
21 prop.store(out, null);
22 in.close();
23)}

2
3
4
5
6 // load default properties
7
8
9

Figure 3: This method is extracted as an example of
File.createNewFile from the GitHub copora. Program slicing
only retains the underlined statements when k bound is set
to 1, since they have direct control or data dependences on
the focal API call to createNewFile at line 18.

ExaMpLECHECK builds the control flow graph of a GitHub snip-
pet and identifies related control structures [1]. A control struc-
ture is related to the given API call, if there exists a path between
the two and the API call is not post-dominated by the control
structure. For instance, the API call to createNewFile (line 18) is
control dependent on the if statements at lines 2 and 17 in Fig-
ure 3. From each control structure, we lift the contained predicate.
This process is a pre-cursor for mining a common guard condi-
tion that protects each API method call in Phase 3. We use the
conjunction of the lifted predicates in all relevant control struc-
tures. If an API call is in the false branch of a control structure, we
negate the predicate when constructing the guard. In Figure 3, since
createNewFile is in the false branch of the if statement at line 2
and the true branch of the if statement at line 17, its guard condi-
tion is temp.equals("props.txt") &8& !file.exists(). The process
of lifting control predicates can be further improved via symbolic
execution to account for the effect of program statement before
an API call. Project-specific predicates and variable names used
in the guard conditions are later generalized in Phase 3 to unify
equivalent guards regardless of project-specific details.

ExAMPLECHECK performs intra-procedural program slicing [36]
to filter out any statements not related to the API method of interest.
For example, Properties API calls in Figure 3 should be removed,
since they are irrelevant to createNewFile. During this process,
ExamPLECHECK uses both backward and forward slicing to identify
data-dependent statements up to k hops. Setting k to 1 retains
only immediately dependent API calls in the call sequence, while
setting k to co includes all transitively dependent API calls. For
instance, the Properties APIs such as load (line 9) and set (lines 11-
13) are transitively dependent on createNewFile through variables
file, out, and prop. Table 1 shows the call sequences extracted
from Figure 3 with different k bounds. By removing irrelevant
statements, program slicing significantly reduces the mining effort

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Zhang, Upadhyaya, Reinhardt, Rajan, & Kim

Bound Variables Structured Call Sequence
k=1 file new File; if {; createNewFile; }; new FileOutputStream
Kea file, fPath, |getAbsolutePath; new File; if {; createNewFile; };
out new FileOutputStream; store
ko3 file, fPath, |new Properties; load; set; set; set; getAbsolutePath; new File;
out, prop if {; createNewFile; }; new FileOutputStream,; store
file, fPath, |new FileInputStream; new Properties; load; set; set; set;
k=00 out, prop, getAbsolutePath; new File; if {; createNewFile; };
in, temp new FileOutputStream; store; close
file, fPath, [if {; debug; }; new FileInputStream; new Properties;
No Slicing| out, prop, in, |getAbsolutePath; load; set; set; set; new File; if {;
temp, log createNewFile; }; new FileOutputStream; store; close

Table 1: Structured call sequences sliced using k bounds.
Guard conditions and argument types are omitted for pre-
sentation purposes.

and also improves the mining precision. Setting k to 1 leads to best
performance empirically (discussed in Section 5).

3.2 Frequent Subsequence Mining

Given a set of structured call sequences from Phase 1, EXAMPLECHECK
finds common subsequences using BIDE [34]. Computing the com-
mon subsequence is widely practiced in the literature of API usage
mining [25, 26, 33, 38] and has the benefit of filtering out API
calls pertinent to only a few outlier examples. In this phase, Exam-
PLECHECK focuses on mining the temporal ordering of API calls
only. The task of mining a common guard condition is done in
Phase 3 instead. BIDE mines frequent closed sequences above a given
minimum support threshold o. A sequence is a frequent closed
sequence, if it occurs frequently above the given threshold and
there is no super-sequence with the same support. When match-
ing API signature, ExAMPLECHECK matches * with any other types
in the same position in an API call. For example, write(int,=)
can be matched with write(int,String) but will not be matched
with write(String,int). EXAMPLECHECK ranks a list of sequence
patterns based on the number of supporting GitHub examples,
which we call support. ExaAMPLECHECK filters invalid sequence
patterns that do not follow the grammar in Figure 2, as frequent
sub-sequence mining can find invalid patterns with unbalanced
brackets such as “foo@true; 3}; }”.

3.3 Guard Condition Mining

Given a common subsequence from Phase 2, ExAMPLECHECK mines
the common guard condition of each API call in the sequence. The
rationale is that each method call in the common subsequence
may have a guard to ensure that the constituent API call does not
lead to a failure. Therefore, ExAMPLECHECK collects all guard con-
ditions from each call from Phase 1 and clusters them based on
semantic equivalence. The guard conditions extracted from GitHub
often contain project-specific predicates and variable names. In
Figure 3, the identified guard condition of createNewFile (line 18)
is temp.equals("props.txt") & !file.exists(). Its first predicate
temp.equals("props.txt") checks whether a string variable temp
contains a specific content. Neither the variable temp nor the pred-
icate are related to the usage of createNewFile. Therefore, Exam-
PLECHECK first abstracts away such syntactic details before clus-
tering guard conditions. For each guard condition from Phase 1,

API Call Guard Generalized Symbolized
. start>=0 && start>=0 && arg0>=0 &&
s.substring(start)
start<=s.length() start<=s.length() arg0<=rcv.length()
L -1<index && -1<index && -1<arg0 &&
log.substring(index)| . .
index<log.length()+1 index<log.length()+1 argO<rcv.length()+1
3 dir!=null && true && true &&
f.substring(i . R .
. . findexOf(*/”)>=0 && f.indexOf("/” arg0>=0 &&
f.indexOf(“/”)) i " . .
f.indexOf(“/”)<=f.length() | f.indexOf(“/”)<=f length() | arg0<=rcv.length()

Table 2: Example guard conditions of String.substring. API
Call shows three example call sites. Guard shows the guard
condition associated with each call site. Generalized shows
the guard conditions after eliminating project-specific pred-
icates. Symbolized shows the guard conditions after symbol-
izing variable names.

ExAaMPLECHECK removes project-specific predicates (i.e., predicates
that do not mention the receiver object or input arguments of the
given API call) by substituting them with true. This ensures that
the generalized guard condition is still implied by the original guard
after removing project-specific predicates. In addition, since each
code snippet may use different variable names, we normalize these
names in the guard conditions. EXAMPLECHECK uses rcv and argi
as the symbolic names of the receiver and the i-th input argument.

Table 2 illustrates how we canonicalize guard conditions of
String.substring. This method takes an integer index as input and
returns a substring that begins from the given index. The third guard
condition in Column Guard contains a project-specific predicate,
dir!=null. Since such predicate is not related to String.substring’s
arguments or receiver object, EXAMPLECHECK substitutes dir!=null
with true, as shown in Column Generalized. All three examples
name the receiver object differently—s, log, and f respectively. Ex-
AMPLECHECK replaces them with a unique symbol, rcv. Similarly,
ExamMPLECHECK replaces the input argument with arge, as shown
in Column Symbolized.

ExaMPLECHECK initializes each cluster with each canonicalized
guard. In the following clustering process, ExaAMPLECHECK checks
the equivalence of every pair of clusters and merges them with if
the guards are logically equivalent, until no more clusters can be
merged. At the end, we count the number of guard conditions in
each cluster as frequency. In a large corpus, the same logic pred-
icate can be expressed in multiple ways. ExAMPLECHECK checks
the semantic equivalence of guard conditions, instead of syntactic
similarity only. ExaMPLECHECK formalizes the equivalence of two
guard conditions as a satisfiability problem:

p © qisvalidiff. =((=p V q) A (p V —q)) is unsatisfiable.

ExaMPLECHECK uses a SMT solver, Z3 [6] to check the logical
equivalence between two guards during the merging process. As
Z3 only supports primitive types, ExAMPLECHECK declares variables
of unsupported data types as integer variables and substitutes con-
stants such as null with integers in Z3 queries. In addition, Exam-
PLECHECK substitutes API calls in a predicate to symbolic variables
based on their return types. Compared with prior work [18], Exam-
PLECHECK is capable of proving the semantic equivalence of arbi-
trary predicates regardless of their syntactic similarity. For example,
the symbolized guards of the first two examples in Table 2 are equiv-
alent, even though they are expressed in different ways, (-1<argo

Are Code Examples on an Online Q&A Forum Reliable?

&& argé<rcv.length()+1) and (6<=arg0 && arg@<=rcv.length()) re-
spectively. Prior work [18] cannot reason about the equivalence
between -1<arg@ and 0<=arge. However, EXAMPLECHECK groups
these logically equivalent predicates into the same cluster using
the integer theorem prover in Z3.

If ExaMPLECHECK identifies a sequence pattern containing mul-
tiple guard patterns for each API call, ExAMPLECHECK enumerates
different guards for each API and ranks these patterns by the num-
ber of supporting code examples in the corpora. Similar to the
subsequence mining in Phase 2, ExAMPLECHECK uses a minimum
support threshold 6 to filter infrequent guard conditions.

We bootstrap ExaAMPLECHECK with both the sequence mining
threshold ¢ and the guard condition mining threshold set to 0.5,
which means sequence and guard condition patterns are reported,
only if more than half of relevant GitHub snippets include them. If
ExaMPLECHECK learns no patterns with these initial thresholds, we
gradually decrease both thresholds by 0.1 till finding patterns. If the
mining process does not terminate after 2 hours due to too many
candidate patterns, we kill the process and increase both thresholds
by 0.1 accordingly. This threshold adjustment method is empirically
effective to achieve a good precision (73%).

3.4 Manual Inspection of Mined API Usage

ExaMPLECHECK scans over 380K GitHub projects and finds an aver-
age of 55144 relevant code snippets for each API method, ranging
from 211 to 450,358 snippets. This result indicates that massive
corpora can provide sufficient code snippets to learn API usage
patterns from. ExaMPLECHECK infers 245 API usage patterns for
the 100 APIs in our study scope. This initial set of patterns may
include invalid or incorrect patterns. Therefore, we manually in-
spect the 245 inferred patterns carefully and exclude incorrect ones
based on online documentation and pattern frequencies. The over-
all precision is 73%, resulting in 180 validated, correct patterns
that we can use for the empirical study in Section 4. These 180
validated patterns cover 85 of the 100 API methods. The rest 15
API methods do not converge to any API usage patterns that can
be confirmed by online documentation, since they are simple to
use and do not require additional guard conditions or additional
API calls. For example, System.nanoTime can be used stand-alone to
obtain the current system time. Even though these 15 API methods
do not have any patterns, we still include them in the scope of
Stack Overflow study, since they represent a category of simple
API methods that programmers are less likely to make mistakes.

During the inspection process, each pattern is annotated as either
alternative or required. A code snippet should satisfy one of alter-
native patterns and must satisfy all required patterns. For example,
ExAaMPLECHECK learns firstKey()@rcv.size()>0@ and firstKey()e-
rev.isEmpty () for SortedMap. firstKey. Both patterns ensure that
a sorted map is not empty before getting the first key to avoid
NoSuchElementException. They are considered alternative to each
other. As an example of required patterns, programmers must
handle potential I0Exception, when reading from a stream (e.g.,
FileChannel), and close it to avoid resource leaks.

Table 3 shows 25 samples of validated API patterns in 9 domains.
Alternative patterns are marked with . Column Description de-
scribes each pattern. For instance, TypedArray is allocated from a

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

static pool to store the layout attributes, whenever a new applica-
tion view is created in Android. It should be recycled immediately
to avoid resource leaks and GC overhead, as mentioned in the
JavaDoc.* This pattern is supported by 2126 of 3348 related snip-
pets in GitHub and inferred by ExaAMPLECHECK (ranked #1). The
entire data set of API usage patterns for all 100 APIs and the list of
SO posts with potential API usage violations are publicly available.?

4 API MISUSE STUDY ON STACK OVERFLOW

We use the data set of validated, desirable API usage patterns from
Section 3 and study API misuse in Stack Overflow posts.

4.1 Data Collection

We collect all Stack Overflow posts relevant to the 100 Java APIs in
our study scope from the Stack Overflow data dump. We extract
code examples in the markdown <code> from SO posts with the
Java tag and consider code examples in the answer posts only, since
code appearing in the question posts is buggy and rarely used
as examples. We gather additional information associated with
each post, including view counts, vote scores (i.e., upvotes minus
downvotes), and whether a post is accepted as a correct answer.

Previous studies have shown that online code snippets are often
unparsable [23, 37] and contain ambiguous API elements [5] due
to the incompleteness of these snippets. ExAMPLECHECK leverages
a state-of-the-art partial program parsing and type resolution tech-
nique to handle these incomplete snippets, whose accuracy of API
resolution is reported to be 97% [24]. Code examples that call over-
ridden APIs or ambiguous APIs (i.e., APIs with the same name but
from different Java classes) are filtered by checking the argument
and receiver types respectively. In total, we find 217,818 SO posts
with code examples for the 100 APIs in our study scope. Each post
has 7644 view counts on average.

ExaMpLECHECK checks whether the structured call sequence of
a Stack Overflow code example is subsumed by the desirable API
usage in the pattern set. A structured call sequence s is subsumed by
a pattern p, only if p is a subsequence of s and the guard condition
of each API call in s implies the guard of the corresponding API call
in p. During this subsumption checking process, the guard condi-
tions in Stack Overflow code examples are generalized in the same
manner before checking logical implication using Z3. For a SO post
with multiple method-level code snippets, ExAMPLECHECK inlines
invoked methods before extracting the structured call sequence in
order to emulate a lightweight inter-procedural analysis.

4.2 Manual Inspection of Stack Overflow

To check whether Stack Overflow posts with potential API misuse
reported by ExaMPLECHECK indeed suggest undesirable API usage,
the first and the third authors manually check 400 random samples
of SO posts with reported API usage violations. We read the text
descriptions and comments of each post and check whether the
surrounding narrative discusses how to prevent the violated pat-
tern. If there are multiple code snippets in a post, we first combine
them all together and check them as a single code example. We also
account for aliasing during code inspection. We examine whether

“https://developer.android.com/reference/android/content/res/Typed Array.html
Shttp://web.cs.ucla.edu/~tianyi.zhang/examplecheck html

https://developer.android.com/reference/android/content/res/TypedArray.html
http://web.cs.ucla.edu/~tianyi.zhang/examplecheck.html

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Zhang, Upadhyaya, Reinhardt, Rajan, & Kim

Domain | API Pattern Support | Description
Collection ArrayList.get loop {; get(int)@arg0<rcv.size(); } 31254 check if the index is out of bounds
Iterator.next iterator()@true; loop {; next()@rcv.hasNext(); } 218962 | check if more elements exist to avoid NoSuchElementException
File.createNewFile if {; createNewFile()@!rcv.exists(); } # 5493 check if the file exists before creating it
0 File.mkdir mkdirs()@true 26343 call mkdirs instead, which also create non-existent parent directories
FileChannel.write try {; write(ByteBuffer)@true; close()@true; }; catch(IOException) {, } & 1267 close the FileChannel after writing to avoid resource leak
PrintWriter.write try {; write(String)@true; close()@true; }; catch(Exception) {; } 2473 close the PrintWriter after writing to avoid resource leak

StringTokenizer.nextToken nextToken()@rcv.hasMoreTokens() &

36179 check if more tokens exist to avoid NoSuchElementException

String Scanner.nextLine loop {; nextLine()@rcv.hasNextLine(); }

2510 check if more lines exist to avoid NoSuchElementException

String.charAt charAt(int)@arg0<rcv.length() 27597 check if the index is out of bounds

Regex Matcher.find matcher(String)@true; find()@true 5851 call matcher to create a Matcher instance first
Matcher.group if {; group(int)@rcv.find(); } 16447 check if there is a match first to avoid I1legalStateException
SQLiteDatabase.query query(String,String[],String,String[],String,String,String) @true; close()@true | 5563 close the cursor returned by query to avoid resource leak

Database | ResultSet.getString

try {; getString(String)@rcv.next(); }; catch(Exception) {; }

18933 check if more results exist to avoid SQLException

Cursor.close finally {; close()@rcv!=null; }

15732 call close in a finally block

Activity.setContentView onCreate(Bundle)@true; setContentView(View)@true

56321 always call super.onCreate first to avoid exceptions

Android TypedArray.getString getString(int)@true; recycle()@true 2126 recycle the TypedArray so it can be reused by a later call
SharedPreferences.Editor.edit | edit()@true; commit()@true 9650 commit the changes to SharedPreferences
ApplicationInfo.loadIcon getPackageManager()@true; loadIcon(PackageManager)@true 400 get a PackageManager as the argument of load
Mac.doFinal try {; getlnstance(String)@true; getBytes(@true; doFinal(byte[)@true; 474 get a Mac instance first and convert the input to bytes

Crypto }; catch(Exception) {; }

MessageDigest.digest getInstance(String)@true; digest()@true 7048 get a MessageDigest instance first
Jsoup.connect try {; connect(String)@true; get()@true; }; catch(IOException); { } & 376 call get to fetch the web content

Network | URL.openConnection

try {; new URL(String)@true; openConnection()@true; }; catch(Exception) {; } | 19056

create a URL object first and handle potential exceptions

HttpClient.execute new HittpGet(String)@true; execute(HttpGet)@true 2536 create a HttpGet object as the argument of execute
Swi SwingUtilities.invokeLater new Runnable()@true; invokeLater(Runnable)@true 20406 create a Runnable object as the argument of invokeLater
win
& JFrame.setPreferredSize setPreferredSize(Dimension)@true, pack()@true 394 call pack to update the JFrame with the preferred size

Table 3: 25 samples of manually validated API usage patterns after GitHub code mining,.

the reported API usage violation could produce any potential be-
havior anomaly, such as program crashes and resource leaks on a
contrived input data or program state and whether such anomaly
could have been eliminated by following the desirable pattern. For
short posts, this inspection takes about 5 minutes each. For longer
posts with a big chunk of code or multiple code fragments, it takes
around 15 to 20 minutes. To reduce subjectivity, the two authors
inspect these posts independently. The initial inter-rater agreement
is 0.84, measured by Cohen’s kappa coefficient [32]. The two au-
thors resolve disagreements on all but two posts, and the kappa
coeflicient after the discussion is 0.99. The two authors disagree
how helpful reported violations are in two posts, where API usage
violations in these posts are either clarified in surrounding natural
language explanations or mentioned in post comments.

True Positive. 289 out of 400 inspected Stack Overflow posts
(72%) contain real API misuse, confirmed by both authors. For in-
stance, the following example demonstrates how to retrieve records
from SQLiteDatabase using Cursor but forgets to close the database
connection at the end.® Programmers should always close the con-
nection to release all its resources. Otherwise, it may quickly run
out of memory, when retrieving a large volume of data from the
database frequently.

1 public ArrayList<UserInfo> get_user_by_id(String id) {

2 ArrayList<UserInfo> listUserInfo = new ArrayList<UserInfo>();

3 SQLiteDatabase db = this.getReadableDatabase();

4 Cursor cursor = db.query(...);

5

6 if (cursor != null) {

7 while (cursor.moveToNext()) {

8 UserInfo userInfo = new UserInfo();

9 userInfo.setAppId(cursor.getString(cursor.getColumnIndex(
COLUMN_APP_ID)));

10 // HERE YOU CAN MULTIPLE RECORD AND ADD TO LIST

11 listUserInfo.add(userInfo);

Shttps://stackoverflow.com/questions/31531250

12 3}

13 3

14 return listUserInfo;
15 3}

In many cases, a code example may function well with some
crafted input data, even though it does not follow desirable API
usage. For example, programmers should check whether the return
value of String. indexOf is negative to avoid IndexOutOfBoundsExcep-
tion. The example below does not follow this practice, but still
works well with a hard-coded constant, text.” One can argue that
the input data is hard-coded for illustration purposes only, as the
role of Stack Overflow post is to provide a starting point rather
than teaching complete details of correct API usage. However, if a
programmer reuses this code example and replaces the hard-coded
text with a function call reading from a html file, the reused code
may crash if the html document does not have an expected element.
Therefore, it is still beneficial to inform the users about desirable
usage and potential pitfalls, especially for a novice programmer
who may not be familiar with the given APL

1 String text = "<img src=\"mysrc\" width=\"128\" height=\"92\" border=\"0\"
alt=\"alt\" /><p>";

text = text.substring(text.indexOf("src=\""));

text = text.substring("src=\"".length());

text = text.substring(@, text.indexOf("\""));

System.out.println(text);

(LR SERISS

Farse Posrtive. ExaAMPLECHECK mistakenly detects API misuse
in 64 posts. The majority reason is that ExAMPLECHECK checks for
API misuse via a sequence comparison without deep knowledge of
its specification, which is not sufficient in 56 posts. For instance, the
following SO post calls substring (line 5) without explicitly check-
ing whether the start index (index+1) is not a negative number and
the end index (strvalue.length()) is not greater than the length

"https://stackoverflow.com/questions/12742734

https://stackoverflow.com/questions/31531250
https://stackoverflow.com/questions/12742734

Are Code Examples on an Online Q&A Forum Reliable?

of the string.8 While ExaMPLECHECK warns potential API misuse,
according to JDK specifications, indexOf never returns a negative
integer < -2. Thus, the following code is still safe, because index+1
is guaranteed to be non-negative. Similarly, strvalue.length() re-
turns the string’s length, which cannot be out of bounds. Such cases
require having detailed specifications, such as the return value of
index0f () is always >1.

1 public String getDecimalFractions(BigDecimal value) {

2 String strValue = value.toPlainString();

3 int index = strValue.indexOf(".");

4 if(index != -1) {

5 return strValue.substring(index+1, strValue.length());
6)

7 return "0";

8

}

Second, 36 false positives are correct but infrequent alternatives.
ExAaMPLECHECK does not learn these alternative usage patterns,
because they do not commonly appear in GitHub. For example,
programmers should first call new SimpleDateFormat to instantiate
SimpleDateFormat with a valid date pattern and then call format,
which is supported by 18,977 related GitHub snippets. An alterna-
tive way is to instantiate SimpleDateFormat by calling getInstance,
as shown in the following SO post.® This alternative usage is sup-
ported by 360 GitHub snippets and therefore not inferred by Exam-
PLECHECK due to its low frequency.

.. some other code...
public String toString() {
Calendar ¢ = new GregorianCalendar();
c.set(Calendar.DAY_OF_WEEK, this.toCalendar());
SimpleDateFormat sdf=(SimpleDateFormat)SimpleDateFormat.getInstance();
sdf.applyPattern("EEEEEEEEEE");
return sdf.format(c.getTime());

® N AU AW N R

In some SO posts, users explicitly state in surrounding natural
language text that the given code example must be improved during
integration or adaptation. The following example shows how to
load a Class instance by name and then cast the class.!® The author
of this post comments that “be aware that this might throw several
Exceptions, e.g. if the class defined by the string does not exist or if
AnotherClass.classMethod() doesn’t return an instance of the class
you want to cast to.” ExAMPLECHECK still flags the post because of
a missing exception handling, since the desirable API usage is not
reflected in the embedded code. However, it is certainly possible
that SO users will read both the code and surrounding text carefully
and investigate how to handle edge cases narrated in the text.

1 Class<?> myclass = Class.forName("myClass_t");
2 myClass_t myVar = (myClass_t)myclass.cast(AnotherClass.classMethod());

Sometimes, Stack Overflow users split a single code example into
multiple fragments and provide step-by-step explanation, which is
considered as a better way of answering questions in Stack Over-
flow [17]. ExaAMPLECHECK may report API misuse if two related API
calls are split in different code fragments.!! This can be addressed
by stitching these snippets together during analysis.

8http://stackoverflow.com/questions/7473462
https://stackoverflow.com/questions/2243850
Ohttps://stackoverflow.com/questions/4650708
Uhttps://stackoverflow.com/questions/11552754

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

4.3 1Is API Misuse Prevalent on Stack Overflow?

ExaMPLECHECK detects potential API misuse in 66,897 (31%) out
of 217,818 Stack Overflow posts in our study. We manually label
each API pattern with its corresponding domain as well as the
consequence of each possible violation. Then we write scripts to
categorize reported violations based on their domains and based on
their consequences. Figure 4 shows the prevalence of API misuse
from different domains. Database, IO, and network APIs are often
misused, since they often require to handle potential runtime ex-
ceptions and close underlying streams to release resources properly
at the end. Similarly, many cryptography related posts are flagged
as unreliable, due to unhandled exceptions. Stack Overflow posts
on string and text manipulation often forget to check the validity of
input data (e.g., whether the input string is empty) or return values
(e.g., whether the returned character index is -1).

Among posts with potential API misuse reported by Exam-
PLECHECK, 76% could potentially lead to program crashes, e.g.,
unhandled runtime exceptions. 18% could lead to incomplete ac-
tion, e.g., not completing a transaction after modifying resources
in Android, or not calling setVisible after modifying the look and
feel of a swing GUI widget. 2% could lead to resource leaks in op-
erating systems, e.g., not closing a stream. We fully acknowledge
that not all detected violations could lead to bugs when ported to a
target application. To accurately assess the runtime impact of SO
code examples, one must systematically integrate these examples
to real-world target applications and run regression tests.

Many SO examples aim to answer a particular programming
question. Therefore, authors of these examples may assume SO
users who posted these questions already know about the used
APIs and may not include complete details of desirable API usage.
However, given that each post has 7,644 view counts on average,
some users may not have similar background knowledge. Especially
for novice programmers, it may be useful to show extra tips about
desirable API usage evidenced by a large number of GitHub code
snippets. We also find that SO posts with API misuse are more fre-
quently viewed than those posts without API misuse, 8365 vs. 7276
on average. Therefore, there is an opportunity to help users con-
sider better or alternative API usage mined from massive corpora,
when they stumble upon SO posts with potential API misuse.

4.4 Are highly voted posts more reliable?

Stack Overflow allows users to upvote and downvote a post to indi-
cate the applicability and usefulness of the post. Therefore, votes
are often considered the main quality metric of Stack Overflow
examples [17]. However, we find that highly voted posts are not
necessarily more reliable in terms of correct API usage. Figure 5
shows the percentage of SO posts with different vote scores that
are detected with at least one API usage violation. We perform a
linear regression on the vote score and the percentage of unreliable
examples, as shown by the red line in Figure 5. We do not observe
a strong positive or negative correlation between the vote of a post
and its reliability in terms of API misuse. A previous study shows
that concise code examples and detailed step-by-step explanations
are two key factors of highly voted Stack Overflow posts [17]. Our
manual inspection confirms that many unreliable examples are sim-
plified to operate on crafted input data for illustration purposes only

http://stackoverflow.com/questions/7473462
https://stackoverflow.com/questions/2243850
https://stackoverflow.com/questions/4650708
https://stackoverflow.com/questions/11552754

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Zhang, Upadhyaya, Reinhardt, Rajan, & Kim

100
!
i

40

Percentage of Code Examples
with API Misuse Per API (%)
20
|

T
!
.
T

—_

=

T
Android

Collection

T
Crypto

Database

10

Network

Regex

Runtime

T
Swing

Text

Time

Figure 4: API Misuse Comparison between Different Domains

(Section 4.2). Such curated examples are not sufficient for various
input data and usage scenarios in real software systems, especially
for handling corner cases. Therefore, votes alone should not be
used as a single indicator of the quality of online code examples.
To improve the quality of curated examples, Stack Overflow needs
another mechanism that helps developers understand the limitation
of existing examples and decide how to integrate the given example
to production code (Section 5).

<
e
® B ° °
]
=1 ° o
2 o
- ° °

E © o000 o
[a 8
< oo ® o oo
< °© °
= o © o o
: QA Ep o oo, % ° R
%) 0 0%° o —— — —
I A P S

)) o o)
a 0 °%) ° ° ° °© o o)

° ° °

2 = : : r
E)
9] ° ° o °
>
(@)
S o4 o o
< T T T T T T
n 0 20 40 60 80 100

Score (i.e., upvotes minus downvotes)

Figure 5: API Misuse Comparison between Code Examples
with Different Vote Scores on Stack Overflow

4.5 What are the characteristics of API misuse?

We classify the detected API usage violations into three categories
based on the required edits to correct the violations.

Missing Control Constructs. Many APIs should be used in a
specific control-flow context to avoid unexpected behavior. This
type of API usage violations can be further split based on the type
of missing control constructs.

Missing exception handling. If an API may throw an exception, the
thrown exception should either be caught and handled a try-catch
block or be declared in the method header. In total, we find 17,432
code examples that do not handle exceptions properly. For example,
Integer.parselnt may throw NumberFormatException if the string
does not contain a parsable integer. The following example will

crash, if a user enters an invalid integer.!?> A good practice is to
surround parseInt with a try-catch block to handle the potential
exception. Unlike checked exceptions such as IOException, runtime
exceptions such as NumberFormatException will not be checked at
compile time. In such cases, it would be helpful to inform users
about which runtime exceptions must be handled based on common
exception handling usage in GitHub.

1 Scanner scanner = new Scanner(System.in);
2 System.out.print("Enter Number of Students:\t");
3 int numStudents = Int’v\ggve\r/.\eg/r\s/e\l/glt(scanner.nextLine());

Missing if checks. Some APIs may return erroneous values such
as null pointers, which must be checked properly to avoid crashing
the succeeding execution. For example, TypedArray.getString may
return null, if the given attribute is not defined in the style resource
of an Android application. Therefore, the return value, customFont
must be checked before passing it as an argument of setCustomFont
(line 6) to avoid NullPointerException, which is violated by the
following Stack Overflow example.!?

1 public class TextViewPlus extends TextView {

2 ... some other code ...

3 private void setCustomFont(Context ctx, AttributeSet attrs) {

4 TypedArray a = ctx.obtainStyledAttributes(attrs, R.styleable.
TextViewPlus);

5 String customFont = a.getString(R.styleable.TextViewPlus_customFont);

6 setCustomFont(ctx, customFont);

7 a.recycle();

8 }

9)

Missing finally. Clean-up APIs such as close should be invoked
in a finally block in case an exception occurs before invoking those
APIs. 83% of Stack Overflow examples that call Cursor.close does
not call it in a finally block, shown in the following.'* cursor.close
may be skipped, if getString (line 5) throws an exception.

1 Cursor emails = contentResolver.query(Email.CONTENT_URI,...);

2 while (emails.moveToNext()) {

3 String email = emails.getString(emails.getColumnIndex(Email.DATA));
4 break;
5
6

smails closeQ);

Missing or Incorrect Order of API calls. In certain cases, mul-
tiple APIs should be called together in a specific order to achieve
2https://stackoverflow.com/questions/3137481

Bhttps://stackoverflow.com/questions/7197867
Yhttps://stackoverflow.com/questions/31427468

https://stackoverflow.com/questions/3137481
https://stackoverflow.com/questions/7197867
https://stackoverflow.com/questions/31427468

Are Code Examples on an Online Q&A Forum Reliable?

Potential API Misuse
Somewhat like this:

‘You may want to use a try-catch block here. 1829
Github code examples also do this. Handle the:
potential IOException thrown by write.

o~

6 short[] payload
teBuffer myByt

v myByteBuffer.ord

e(20) ;5

i
ShortBuffer myShortBuffer = myByteBuffer.asShortBu A vy {
myShortBuffer. put (eéyload) ;

o —— —— Wl it write();
out.uritedfyByteBuffer);
out.close ()} } catch (IOException e) {
And somewhat liRa.this to get it back: G }
JyteBuffer myByteBuffew = ByteB Llocate(20) M See this in a GitHub example:
myByteBuffer.order (ByteONer. LITTLE N e

) = new e Example 1
in.read(myByteBuffer); e Example 2
myByteBuffer.flip(); Example 3

myShortBuffer.get(payload);
System.out.println(Arrays. toString (payload))?

Figure 6: Chrome extension for augmenting Stack Overflow
posts with mined API usage

desired functionality. Missing or incorrect order of such API calls
can lead to unexpected behavior. For example, developers must call
flip, rewind, or position to reset the internal cursor of ByteBuffer
back to the previous position to read the buffered data properly.
The following SO example could throw BufferUnderflowException,
if the internal cursor already reached the upper bound of the buffer
after the put operation at line 2.1> Without resetting the internal
cursor, the next getInt operation at line 3 would start reading from
the upper bound, which is prohibited. We find 7,956 posts that
either misses a critical API call or calls APIs in an incorrect order.

1 ByteBuffer bb = ByteBuffer.allocate(4);
2 bb.put(newArgb);
3 nt i = bb.getInt);

Incorrect Guard Conditions. Many APIs should be invoked un-
der the correct guard condition to avoid runtime exceptions. For
instance, programmers should check whether a sorted map is empty
with a guard like map.size()>@ or !map.isEmpty() before calling
firstKey (API#9) on the map. However, the following calls firstKey
on an empty map without a guard, leading to NoSuchElementExcepti-
on.!® Surprisingly, this example is accepted as the correct answer
and also upvoted by six other developers on Stack Overflow. We
find 12,791 posts with incorrect guard conditions.

1 TreeMap map = new TreeMap();
2 //OR SortedMap map = new TreeMap()
3 map. firstkeyQ);

5 DISCUSSION

Augmentation of Stack Overflow. The study results from Sec-
tion 4 indicate that even highly voted and frequently viewed SO
posts do not necessarily follow desirable API usage. There is an
opportunity to help developers consider better or alternative API
usage that is mined from massive corpora and is supported by thou-
sands of GitHub snippets. Certainly, the goal of Stack Overflow
is to provide ‘quick snippets’ and not to share complete details
of API usage or present compilable, runnable code. Rather, Stack
Overflow often serves the purpose of providing a starting point

Shttp://stackoverflow.com/questions/12100651
16http://stackoverflow.com/questions/21983867

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

10 T T T T T
> k=1
- k=2 .
Precision (%) | Recall (%) | Rank
—— k=3 Setting °, (%)
105 [0 ke 3 Top 5 Top 5
— —e—No Slicing
2
£ k=1 80 91 3
S
£ 0} 1 k=2 79 92| 4
k=3 80 91 4
l | |k=co 74 91 4
L L L L L No Slicing 65 81 9
10! 10% 10° 10t 10°

Num of GitHub Snippets

Figure 7: Mining time and accuracy with varying k bounds.

and helping the user to grasp the gist of how the API works by
omitting associated details such as which guard conditions to check
and which runtime exceptions to handle. Nevertheless, it would
be useful for a user to see related API usage along with concrete
examples substantiating the desirable API usage, when the user
is browsing the given SO post. Such information may reduce the
effort of integrating, adapting, and testing the given code example.
Figure 6 sketches a Chrome extension that we design to augment
a given SO post with mined API usage patterns. If there exists bet-
ter or alternative API usage such as enclosing FileChannel.write
within a try-catch block, the browser extension highlights the rele-
vant API call on the original post and provides a hovering menu
with the description “You may want to use ... 1829 GitHub code snip-
pets also do this” along with concrete examples. While our proposed
browser extension follows a similar style to Codota,!” Codota does
not group related examples based on common API usage, does
not quantify how many GitHub code snippets support the com-
mon usage, and does not detect API misuse by contrasting the SO
post against the usage. We leverage the data set of GitHub snippets
mined by ExaMpLECHECK and design novel interactive visualization
for exploring massive code examples simultaneously [12].
API Usage Mining Running Time and Accuracy. We briefly de-
scribe the running time and accuracy of API usage mining employed
in Maple. Figure 7(a) shows the performance of ExAMPLECHECK
with different k bounds. On average, the mining time is within
10 minutes for each API. We run each experiment five times and
compute the average execution time. Setting k to co retains all de-
pendent API calls in a sliced call sequence, while setting k to 1
retains only immediately dependent calls. Setting k to 1 can achieve
3.3X speed up compared with setting k to oo, since it creates shorter
call sequences by removing transitively dependent API calls. Ex-
AMPLECHECK runs up to 4.6X slower without program slicing.
Figure 7(b) shows the pattern mining accuracy using different
k bounds. The evaluation is done for the 30 APIs from MUBENCH
using its ground truth [2]. ExAMPLECHECK has 80% precision and
91% recall, when considering top 5 patterns for each API method.
Even though limiting dependency analysis with lower bounds may
lead to incomplete sequences with fewer API calls, varying k does
not affect accuracy much. However, compared with unbounded
analysis, filtering out transitively dependent API calls can improve
precision and recall slightly. This is because long API call sequences
may introduce additional patterns of no interest.

Thttps://www.codota.com/code-browsing-assistant

http://stackoverflow.com/questions/12100651
http://stackoverflow.com/questions/21983867
https://www.codota.com/code-browsing-assistant

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Threats to Validity. Our study is limited to 100 Java APIs that
frequently appear in Stack Overflow and thus may not generalize
to other Java APIs or different languages. Our scope is limited to
code snippets found on Stack Overflow. Other types of online re-
sources such as programming blogs and other Q&A forums may
have better curated examples. According to the manual inspection
of 400 sampled SO posts with detected API usage violations, Ex-
AMPLECHECK detects API misuse with 72% precision (Section 4.2).
While the precision is rather low, ExaMPLECHECK could be still use-
ful in the case of false positives, since the goal of ExAMPLECHECK
is not to discard SO posts with potential API violations, but rather
to suggest desirable or alternative API usage details to the users.

6 RELATED WORK

Quality Assessment of Online Code Examples. Prior work has
investigated the quality of online code examples from different
perspectives. The majority of code examples on Stack Overflow
are free-standing program statements that cannot be accepted by
compilers [23, 37]. Due to the incompleteness of code snippets, 89%
of API names in code snippets from online forums are ambigu-
ous and cannot be easily resolved [5]. Subramanian et al. design
a partial program parsing and type resolution technique for Stack
Overflow code snippets, which ExaAMPLECHECK uses to resolve API
names [24]. Zhou et al. find that 86 of 200 accepted posts on Stack
Overflow use deprecated APIs but only 3 of them are reported by
other programmers [39]. Fischer et al. investigate security-related
code on Stack Overflow and find that 29% is insecure [9]. They
further apply clone detection to check whether insecure code is
reused from Stack Overflow to Android applications on Google
Play and find that insecure code may have been copied to over
1 million Android apps. An et al. investigate copyright issues be-
tween Stack Overflow and GitHub [4] and find a large number of
potential license violations. Treude and Robillard conduct a survey
to investigate comprehension difficulty of code examples in Stack
Overflow [29]. The responses from GitHub users indicate that less
than half of the SO examples are self-explanatory.

While our study also indicates the limitation of code example

quality in Stack Overflow, our study focuses on API usage violations
that may lead to unexpected behavior such as program crashes and
resource leaks by contrasting SO code examples against desirable
APT usage mined from massive corpora. Our results strongly mo-
tivate the need of systematically augmenting Stack Overflow and
helping the user to implicitly assess the given SO example with
quantitative evidence about how many GitHub snippets follow (or
do not follow) related API usage patterns.
API Usage Mining. There is a large body of literature in mining
implicit programming rules, API usage, and temporal properties
of API calls. Since API usage mining is only a part of our data set
construction process, we are not arguing the novelty of API mining
employed in ExaMPLECHECK. Nevertheless, we briefly describe how
API usage mining in ExAMPLECHECK is related to prior work.

Gruska et al. extract call sequences from programs and perform
formal concept analysis [11] to infer pairwise temporal properties
of API calls [14]. Many other specification mining techniques are
dedicated to inferring temporal properties of API calls [3, 8, 10,
19, 20, 35]. UP-Miner mines frequent sequence patterns but does

Zhang, Upadhyaya, Reinhardt, Rajan, & Kim

not retain control constructs and guard conditions in API usage
patterns [33]. Several techniques [15, 16, 27] model programs as
item sets and infer pairwise programming rules using frequent
itemset mining [13], which does not consider temporal ordering or
guard conditions of API calls.

ExaMPLECHECK mines from massive corpora of GitHub projects,
several orders of magnitude larger than prior work [14, 20, 33, 35].
ExAaMPLECHECK mines not only API call ordering but also guard con-
ditions using predicate mining. To our best knowledge, Ramanathan
et al. [21] and Nguyen et al. [18] are the only two predicate min-
ing techniques. Ramanathan et al. apply inter-procedure data-flow
analysis to collect all predicates related to a call site and then use
frequent itemset mining to find common predicates. Unlike Ex-
AMPLECHECK, Ramanathan et al. only mine a single project and
cannot handle semantically equivalent predicates in different forms.
Nguyen et al. improve upon Ramanathan et al. by normalizing pred-
icates using several rewriting heuristics. Unlike these techniques,
ExaMPLECHECK formalizes the predicate equivalence problem as a
satisfiability problem and leverages a SMT solver to group logically
equivalent predicates during guard mining.

7 CONCLUSION

Programmers often resort to code examples on online Q&A forums
such as Stack Overflow to learn about how to use APIs correctly
during software development. However, the reliability of code exam-
ples in Stack Overflow posts is under-investigated. To demonstrate
the prevalence and severity of API misuse in online code examples,
we mine frequent API usage patterns from 380,125 GitHub reposito-
ries, carefully check the resulting 245 mined patterns manually, and
contrast 217,818 Stack Overflow posts with 180 validated patterns.
Our study provides empirical evidence that almost one third of
Stack Overflow posts may contain potential API usage violations
that could produce symptoms such as program crashes and resource
leaks. Even highly voted posts are not necessarily more reliable
than other posts in terms of API usage correctness.

Certainly, the purpose of Stack Overflow is to provide a starting
point for investigation and its code examples do not necessarily
include all details of how to reuse the given code. However, for
novice developers, it may be useful to show extra tips about desir-
able API usage evidenced by a large number of GitHub snippets.
Our work provides a foundation for enriching and enhancing code
snippets in a collaborative Q&A forum by contrasting them against
frequent usage patterns learned from massive code corpora. Such
approach could help the user to implicitly assess the given code
example and reduce the effort of integrating, adapting, and testing
the curated example in a target application. As a future work, we
plan to validate ExamMPLECHECK with developers and solicit their
feedback on its Chrome extension.

8 ACKNOWLEDGMENTS

We would like to thank anonymous reviewers for the helpful feed-
back. This work is supported by AFRL grant FA8750-15-2-0075,
and NSF grants CCF-1527923, CCF-1460325, CCF-1423370, CNS-
1513263, and CCF-1518897. Anastasia Reinhardt’s internship at
UCLA is supported by CRA-W Distributed Research Experiences
for Undergraduates (DREU) program.

Are Code Examples on an Online Q&A Forum Reliable?

REFERENCES

(1]
(2]

[3

[7

[

8

=

=

[10]

(1]

[12]

[13

[14

=
A

[16]

(17

[18

=
o

[20]

[21]

[22

[23

[24]

Frances E Allen. 1970. Control flow analysis. In ACM Sigplan Notices, Vol. 5. ACM,
1-19.

Sven Amani, Sarah Nadi, Hoan A Nguyen, Tien N Nguyen, and Mira Mezini.
2016. MUBench: a benchmark for API-misuse detectors. In Proceedings of the
13th International Conference on Mining Software Repositories. ACM, 464-467.
Glenn Ammons, Rastislav Bodik, and James R. Larus. 2002. Mining specifica-
tions. In POPL °02: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM Press, New York, NY, USA, 4-16.
DOI:http://dx.doi.org/10.1145/503272.503275

Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. 2017. Stack overflow:
a code laundering platform?. In Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference on. IEEE, 283-293.

Barthélémy Dagenais and Martin P Robillard. 2012. Recovering traceability links
between an API and its learning resources. In 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 47-57.

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2013. Boa: A
language and infrastructure for analyzing ultra-large-scale software repositories.
In Proceedings of the 2013 International Conference on Software Engineering. IEEE
Press, 422-431.

Michael D Ernst, Jake Cockrell, William G Griswold, and David Notkin. 2001.
Dynamically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering 27, 2 (2001), 99-123.

Felix Fischer, Konstantin Béttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered Harmful?
The Impact of Copy&Paste on Android Application Security. In Security and
Privacy (SP), 2017 IEEE Symposium on. IEEE, 121-136.

Mark Gabel and Zhendong Su. 2010. Online inference and enforcement of
temporal properties. In Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1. ACM, 15-24.

Bernhard Ganter and Rudolf Wille. 2012. Formal concept analysis: mathematical
foundations. Springer Science & Business Media.

Elena Glassman®, Tianyi Zhang”, Bjérn Hartmann, and Miryung Kim. 2018. Visu-
alizing API Usage Examples at Scale. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM. *The two lead authors contributed
equally to the work as part of an equal collaboration between both institutions.
Gosta Grahne and Jianfei Zhu. 2003. Efficiently using prefix-trees in mining
frequent itemsets.. In FIMI, Vol. 90.

Natalie Gruska, Andrzej Wasylkowski, and Andreas Zeller. 2010. Learning from
6,000 projects: lightweight cross-project anomaly detection. In Proceedings of the
19th international symposium on Software testing and analysis. ACM, 119-130.
Zhenmin Li and Yuanyuan Zhou. 2005. PR-Miner: automatically extracting
implicit programming rules and detecting violations in large software code. In
ACM SIGSOFT Software Engineering Notes, Vol. 30. ACM, 306-315.

Martin Monperrus, Marcel Bruch, and Mira Mezini. 2010. Detecting missing
method calls in object-oriented software. In European Conference on Object-
Oriented Programming. Springer, 2-25.

Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverflow.
In Software Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE,
25-34.

Hoan Anh Nguyen, Robert Dyer, Tien N Nguyen, and Hridesh Rajan. 2014. Mining
preconditions of APIs in large-scale code corpus. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
166-177.

Michael Pradel and Thomas R Gross. 2009. Automatic generation of object usage
specifications from large method traces. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE Computer
Society, 371-382.

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R Gross. 2012. Stati-
cally checking API protocol conformance with mined multi-object specifications.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, 925-935.

Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. 2007.
Static specification inference using predicate mining. In ACM SIGPLAN Notices,
Vol. 42. ACM, 123-134.

Caitlin Sadowski, Kathryn T Stolee, and Sebastian Elbaum. 2015. How developers
search for code: a case study. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. ACM, 191-201.

Siddharth Subramanian and Reid Holmes. 2013. Making sense of online code snip-
pets. In Proceedings of the 10th Working Conference on Mining Software Repositories.
IEEE Press, 85-88.

Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In Proceedings of the 36th International Conference on Software

[25

[26

[27

[29

[30]

(31

[32

(33]

(34]

[35

[36]

[37

[38

[39

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Engineering. ACM, 643-652.

Suresh Thummalapenta and Tao Xie. 2007. Parseweb: a programmer assistant
for reusing open source code on the web. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering. ACM,
204-213.

Suresh Thummalapenta and Tao Xie. 2009. Mining exception-handling rules as
sequence association rules. In Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 496-506.

Suresh Thummalapenta and Tao Xie. 2011. Alattin: mining alternative patterns
for defect detection. Automated Software Engineering 18, 3 (2011), 293.

Emina Torlak and Satish Chandra. 2010. Effective Interprocedural Resource
Leak Detection. In Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 535-544.
DOI : http://dx.doi.org/10.1145/1806799.1806876

Christoph Treude and Martin P Robillard. 2017. Understanding Stack Overflow
Code Fragments. In Proceedings of the 33rd International Conference on Software
Maintenance and Evolution. IEEE.

Medha Umarji, Susan Elliott Sim, and Crista Lopes. 2008. Archetypal internet-
scale source code searching. In IFIP International Conference on Open Source
Systems. Springer, 257-263.

Ganesha Upadhyaya and Hridesh Rajan. 2018. Collective Program Analysis. In
Proceedings of the 40th International Conference on Software Engineering. ACM.
Anthony] Viera, Joanne M Garrett, and others. 2005. Understanding interobserver
agreement: the kappa statistic. Fam Med 37, 5 (2005), 360-363.

Jue Wang, Yingnong Dang, Hongyu Zhang, Kai Chen, Tao Xie, and Dongmei
Zhang. 2013. Mining succinct and high-coverage API usage patterns from source
code. In Proceedings of the 10th Working Conference on Mining Software Reposito-
ries. IEEE Press, 319-328.

Jianyong Wang, Jiawei Han, and Chun Li. 2007. Frequent closed sequence
mining without candidate maintenance. IEEE Transactions on Knowledge and
Data Engineering 19, 8 (2007).

Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. 2007. Detecting
object usage anomalies. In Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering. ACM, 35-44.

Mark Weiser. 1981. Program slicing. In Proceedings of the 5th international
conference on Software engineering. IEEE Press, 439-449.

Di Yang, Aftab Hussain, and Cristina Videira Lopes. 2016. From query to usable
code: an analysis of stack overflow code snippets. In Proceedings of the 13th
International Workshop on Mining Software Repositories. ACM, 391-402.

Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. 2009. MAPO: Mining and
recommending API usage patterns. In European Conference on Object-Oriented
Programming. Springer, 318-343.

Jing Zhou and Robert] Walker. 2016. API deprecation: a retrospective analysis and
detection method for code examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ACM, 266-2717.

http://dx.doi.org/10.1145/503272.503275
http://dx.doi.org/10.1145/1806799.1806876

